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We derive an exact formula for the thermal-conductivity tensor of a ballistic phonon Hall model. It is found
that, although the diagonal elements of the conductivity tensor diverge to infinite, the off-diagonal elements are
finite, antisymmetric, and odd in magnetic field. The off-diagonal elements are nonzero only if the dynamic
matrix of the phonon system breaks mirror-reflection symmetry. The results are obtained without perturbative
treatment of the spin-phonon interactions.
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The Hall effect of electronic conduction is well known
and has many applications. The analogous effects for the
transport of gas molecules, spins, and photons also exit.1–3

The phonon Hall effect, that is, the appearance of a trans-
verse thermal current when a magnetic field is applied per-
pendicular to the direction of temperature gradient, is eso-
teric and not well understood. Electrons couple directly to
the magnetic field through the Lorentz force. However, there
is no obvious coupling between phonons and magnetic field.
In 2005, Strohm et al.4 reported such an effect in a paramag-
netic dielectric garnet Tb3Ga5O12 and confirmed also in Ref.
5. Two theoretical papers followed.6,7 Both of them consid-
ered a similar model of the spin-phonon interaction, and both
of them treated the interaction perturbatively. The work in
Ref. 7 appeared to imply that ballistic systems cannot pro-
duce a phonon Hall effect, and the authors evoked further
high-order spin-phonon interaction terms to demonstrate the
existence of the effect. Although the two approaches are
quite different, one based on Green-Kubo formula and the
other on Boltzmann-type kinetic equation, curiously, the final
results for the off-diagonal thermal-conductivity tensor are
similar.

In this Brief Report, we address the following issues. �1�
Is a ballistic system capable of producing the phonon Hall
effect? Our answer to this question is affirmative, although
the effect will be smaller as the linear size L of the system
becomes larger �scaled as 1 /L�. �2� What is the role of sym-
metry? We found that break of a mirror-reflection symmetry
is essential to observe the phonon Hall effect. If the system
looks the same inside a mirror, we should not observe such
effect on very general ground. We use the model in Refs. 6
and 7 but with an exact treatment. The perturbative expan-
sion with respect to the spin-phonon interaction breaks down
near the � point of the phonon dispersion. This complicates
the behavior of thermal conductivity at very low tempera-
tures. Since the model is ballistic, the thermal conductivity,
in general, should diverge with the system sizes. But for
isotropic systems such as the two-dimensional square or hon-
eycomb lattices, the off-diagonal thermal conductivity is in
fact finite. In the following, we introduce the model and
outline a derivation of the thermal conductivity using Green-
Kubo formula, present numerical results, and give some
comparison with experiments.

We consider a harmonic periodic lattice with the extra
Raman �or spin-orbit� interaction at each lattice site propor-

tional to s · �r�p�. Here s is a �pseudo� spin representing the
Kramer doublet; r and p are displacement and conjugate
momentum. We will replace s by an average magnetization
of the system and choose the vector to be in z direction. The
explicit spin degrees of freedom drop out of the problem.
The Hamiltonian of the system can be written in a compact
form

H =
1

2
pTp +

1

2
uTKu + uTAp , �1�

where u is a column vector of displacements away from
lattice equilibrium positions for all the degrees of freedom,
multiplied by the square root of mass, p is the associated
conjugate momentum vector, and K is the force-constant ma-
trix. The superscript T stands for matrix transpose. The Ra-
man term, uTAp, is on site, A is an antisymmetric real matrix,
and AT=−A is block diagonal with diagonal elements �in two
dimensions�

� 0 + h

− h 0
� . �2�

We will call h magnetic field though h is only proportional to
the real magnetic field in a paramagnet. It has a dimension of
frequency. Since the interaction term depends on the momen-
tum, the velocity and momentum are not the same but related
through u̇= p−Au. This is the same model studied in Refs. 6
and 7 except a slightly different notation. It has been pro-
posed �in a more general form� based on quantum theory and
fundamental symmetries long time ago to study spin-phonon
interactions.8–10 We also note that Hamiltonian �1� is identi-
cal in form to the model of ionic crystals in a uniform mag-
netic field.11

Equation �1� is quadratic in the dynamic variables u and
p, thus is amenable for an exact solution. Our calculation
procedure is as follows. We first obtain the eigenmodes of
the system. Using the eigenmodes, we give an expression for
the energy current. We then apply the Green-Kubo formula
to compute the thermal-conductivity tensor. Since the system
is periodic, we can apply the Bloch theorem. The polariza-
tion vector � satisfies
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��− i� + A�2 + D�� = 0, �3�

where D�k�=�l�Kl,l�e
i�Rl�−Rl�·k is the dynamic matrix. Kl,l� is

the submatrix between unit cells l and l� in the full spring-
constant matrix K; Rl is the real-space lattice vector. This
equation does not define a standard eigenvalue problem. It is
numerically more advantageous to consider both the coordi-
nates and momenta and to solve an eigenvalue problem:

i�x = � A D

− I A
�x , �4�

where x= �� ,��T and I is an identity matrix. Contrary to the
usual lattice dynamic problems, the polarization vectors are
not orthogonal to each other. We need to find both the right
and left eigenvectors. Because of the special form of Eq. �4�,
the left and the right eigenvectors are not really independent.
It is possible to choose the left eigenvectors x̃= ��̃ , �̃�= ��† ,
−�†�. The orthonormal condition then holds between the left
and right eigenvectors. In particular, the eigenmodes can be
normalized according to

�†� +
i

�
�†A� = 1. �5�

Since the matrix on the right-hand side of Eq. �4� is not
anti-Hermitian, there is no guarantee that the frequencies �
will be real but the eigenvalues always come in pairs, ��.
We take only ��0 modes. With these choices of the eigen-
modes, displacement and momentum operators can be taken
in the second quantization form

ul = �
k

�ke
iRl·k� 	

2�kN
ak + H.c., �6�

pl = �
k

�ke
iRl·k� 	

2�kN
ak + H.c., �7�

where k= �k ,
� specifies the wave vector as well as the pho-
non branch, ak is the annihilation operator, and H.c. stands
for Hermitian conjugate. The momentum and displacement
polarization vectors are related by, e.g., �=−i��+A�. We
can verify that the canonical commutation relations are sat-
isfied, �ul , pl�

T �= i	�l,l�I and H=�k	�k�ak
†ak+1 /2�.

Based on a definition of the local energy density and the
continuity equation for energy conservation, an energy cur-
rent density can be defined as6,7,12

Jc =
1

2V
�
l,l�

�Rl
c − Rl�

c �ul
TKl,l�u̇l�, �8�

where the index c=x, y, or z labels the cartesian axis and V is
the total volume of N unit cells. The components of the
current-density vector can be expressed in terms of the
creation/annihilation operators. Ignoring the aa and a†a†

terms which vary rapidly with time, one obtains7

Jc =
	

4V
�
k,k�

�� �k

�k�
+��k�

�k
��k

†�D�k�
�kc �k�ak

†ak��k,k�.

�9�

The thermal-conductivity tensor can be obtained from the
Green-Kubo formula13

�ab =
V

	T
	

0

	

d�	
0

�

dt
Ja�− i��Jb�t��eq, �10�

where =1 / �kBT�, the average is over the equilibrium en-
semble with Hamiltonian H. The time dependence of the
annihilation operator is trivially given by ak�t�=ake

−i�kt. This
is also true if t is imaginary. Substituting the expression Jc

into Eq. �10�, using the result


ai
†ajak

†al�eq = f ifk�ij�kl + f i�f j + 1��il� jk, �11�

where f i= �e	�i −1�−1 is the Bose distribution function, we
obtain

�ab =
	

16VT
�

k,
,
�

e	���−�� − 1

�� − �

1

� − i�� − ���

� F
�

a �k�F

�

b �k�f�����f��� + 1� , �12�

where the F function is defined as

F

�
a �k� = �� �

��
+���

�
��†�D�k�

�ka ��. �13�

To simplify notations, we have suppressed indices, e.g., �
=�
�k� and ��=�
��k�. We have added a damping term e−�t

when integrating the oscillatory factor. The diagonal element
of F is related to the group velocity, F



a �k�=2��k
2 /�ka. The

off-diagonal elements are, in general, not zero. The first term
in Eq. �11� factors into two independent summations which
do not contribute to �ab due to the symmetry of �
�k� with
respect to the wave vector k. Equation �12�, together with the
definition �13�, is the main result of this Brief Report.

We make some general comments on Eq. �12�. The first
and last factors inside the summation sign can be combined,
�e	���−��−1�f��f +1�= f − f�. Written in this way, the equa-
tion resembles the Landauer formula for ballistic transport.
The second factor makes the conductivity diverge in the
form 1 /� unless the leading term in an expansion in the
damping factor � happens to be zero. The diagonal elements
�aa indeed diverge to infinite. This is expected, as the system
is ballistic consisting of independent oscillating modes.
There is no intrinsic scattering mechanism in the system.

The off-diagonal elements do not diverge if the system is
isotropic in the sense that �ab is independent of the choice of
the coordinate axis. In this case, the off-diagonal elements
are antisymmetric and odd in the magnetic field h, �ab�h�
=−�ba�h�=�ba�−h�, consistent with the Onsager relation.
This property does not hold for anisotropic systems. We ar-
gue that in the isotropic case, Eq. �12� is physical and is the
correct prediction for the Hall thermal conductivity.

Even in the isotropic case, the off-diagonal term is zero
unless reflection symmetry is broken. More precisely, if there
exists an orthogonal transformation independent of k such
that SDST=D and SAST=−A, then �ab=0 for a�b. The
physical meaning of this symmetry is clear. If we look the
system in a mirror, since D is the same and A flips a sign but
the physics must be invariant, we should have �ab�D ,A�
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=�ab�D ,−A�. But �ab�D ,A� must be an odd function in A. So
we must have �ab=0 for a�b. This property should be quite
general, independent of models used. As an example of sys-
tems with vanishing off-diagonal thermal conductivity, we
can cite a square lattice �or cubic lattice� with only the
nearest-neighbor coupling with a dynamic matrix which is
diagonal.

In the following, we present numerical results based on
Eq. �12�. But first, we discuss some interesting features of
the phonon dispersion when the Raman interaction term is
present. In Fig. 1, we show results for a triangular lattice
with only the nearest-neighbor couplings. The coupling ma-
trix between two sites is such that the longitudinal spring
constant is KL=0.144 eV / �uÅ2� and the transverse spring
constant KT is 4 times smaller. The unit-cell lattice vectors
are �a ,0� and �a /2,a�3 /2� with a=1 Å. This choice gives
longitudinal and transverse sound velocities of 3981 and
1921 m/s, respectively, comparable to typical experimental
values. At the � point, the effect of the interaction is to shift
the frequencies from �0 to �0�h, for both the acoustic and
optical modes �if any�. In particular, the acoustic modes de-
velop gaps from zero. Away from the � point, the corrections
are of order h2. Due to the interaction, some modes have
imaginary frequencies and are no longer stable. This is very
pronounced for the transverse modes with large h, see Fig.
1�b�. The system can be stabilized, at least for small h, by
adding a small on-site potential �which, of course, breaks the
translational invariance of the lattice�. This instability per-
haps will not appear in the ionic-crystal model11 because
on-site terms are supplied by the Lorentz force itself.

In Fig. 2, we give the off-diagonal thermal conductivity
�xy of the triangular lattice �assuming 1 Å thick� as a func-
tion of h for two different temperatures, T=5 and 100 K. For
small h, the dependence of �xy on h is linear. For large h, the
growth becomes weaker than linear. For very large h �not
shown�, owing to the instability, �xy becomes rather singular
and can even become negative. This range of parameters is
not physical. In computing the results of Fig. 2, we have

added a small on-site value of order 10−6KL. The results are
sensitive for this on-site value only for large h but are nearly
independent of the on-site value for small h.

In Fig. 3, we display the temperature dependence of the
off-diagonal thermal conductivity �xy. It is seen that �xy satu-
rates at about 100 K at h=0.1 rad THz. At low temperatures,
�xy decreases with temperature approximately linearly. How-
ever, due to a complicated effect of h to the dispersion rela-
tion, it appears that �xy has a faster fall off than linear.

We comment on experimental data4,5 in comparison with
our numerical results. We have not taken into account the
specific lattice structure and atomic details used in experi-
ments. A quantitative comparison is not possible. However,
the phonon model parameters are comparable to real systems
by matching the sound velocities. The most uncertainty in a
comparison is the coupling h. The experimental value for �xy
at T=5.13 K and magnetic field H=3 T is 2.0
�10−5 W m−1 K−1.5 This is consistent with a very small
value of h=10−3 rad THz. The diagonal element �xx�=�yy�
diverges to infinite in our theory, which implies an infinite
mean-free path. We can, however, choose a finite � in Eq.
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FIG. 1. �Color online� Phonon-dispersion relation of a triangular
lattice. �a� The angular frequency of longitudinal mode as a function
of kya with kx=0. The bottom curve is h=0 and the top curve is
h=5�1012 rad s−1. �b� The frequency as a function of h at a fixed
wave vector ka= �0,1�. The top curve is the longitudinal mode and
the bottom �broken� curve is the transverse mode.
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FIG. 2. �Color online� Thermal Hall conductivity as a function
of the coupling h for fixed temperatures T=5 and 100 K,
respectively.
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FIG. 3. �Color online� Thermal Hall conductivity �xy as a func-
tion of the temperature T for fixed coupling h=1011 rad /s �solid
line� and 1012 rad /s �dotted line�.
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�12� to mimic a finite phonon life time. By matching the
experimental value of order 0.5 W m−1K−1, we can give an
order-of-magnitude estimate of the mean-free path �=c /�
�103 Å for the experimental sample �where c is the speed
of sound�, which appears a bit too small given the very low
temperatures in experiments.

It is interesting to compare the present treatment with that
of nonequilibrium Green’s function �NEGF� approach in
Ref. 14. The qualitative features are in agreement such as the
vanishing phonon Hall effect on square lattice. In NEGF
approach, the leads are modeled explicitly. It is assumed that
leads do not have the spin-phonon interaction. This has the
advantage of stabilizing the system, even though the spin-
phonon system represented by the Hamiltonian H, Eq. �1�,
may be unstable as a bulk system. NEGF deals with very
small systems in practice. Some of the oscillatory behaviors,
perhaps of a reflection of the wave nature, are not found
here. The present theory is more suitable for comparison
with experiments which were done on samples of millimeter
scale.

Another point is the role of nonlinear interactions. The
phonon-phonon and spin-phonon interactions will produce a
finite life time for the phonons, rendering a finite thermal-
conductivity tensor for all components. We expect that if

there is a systematic expansion in terms of the phonon life
time or in terms of the interaction strength, our main result,
Eq. �12�, should be the leading contribution. The interaction
should give only small corrections.

In summary, we have presented a theory of phonon Hall
effect based on a ballistic lattice dynamic model. It is shown
that the phonon Hall effect can be present, provided that the
system does not possess a reflection symmetry. Since the
Hamiltonian is quadratic in the dynamic variables, a pertur-
bative treatment is not necessary. In fact, it fails near the �
point. We find that the phonon polarization vectors are not
orthonormal. A computationally efficient method is presented
to deal with it. We have given numerical results on a simple
two-dimensional triangular lattice and the qualitative fea-
tures are the same for all lattices in two and three dimen-
sions. When more elaborate models are known �e.g., from a
first-principles calculation�, the current theory can be applied
to more realistic systems. Our theory can also be used for the
thermal transport in ionic crystals in a strong magnetic field.
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